Mechanism of acute silver toxicity in marine invertebrates.
نویسندگان
چکیده
In freshwater crustaceans and in both freshwater and marine fish, the key mechanism of acute silver toxicity involves ionoregulatory impairment. An inhibition of the Na+ ,K+-ATPase located at the basolateral membrane of the gill epithelium seems to be the key site for silver toxicity. However, studies to determine if the same mechanism of toxicity is occurring in marine invertebrates, which also are ionoregulators, had not been done. Thus, the present study was carried out to determine acute silver effects on hemolymph osmo- and ionoregulation in three marine invertebrates: the shrimp Penaeus duorarum, the sea hare Aplysia californica, and the sea urchin Diadema antillarum. Animals were exposed to silver (1 or 10 microg/L), as silver nitrate, in seawater for 48 h. Results show that acute silver exposure did not affect hemolymph osmolality or ion concentration (Na+, Cl-, K+, Ca2+ and Mg2+) in the three species studied. However, silver induced significant changes in the water content in shrimp gill and sea hare gill and hepatopancreas. Silver also caused significant changes in Na+ ,K+-ATPase activity and in both total and intracellular ion (Cl-, Na+, K+, Mg2+, and Ca2+) concentrations in different tissues of the three species studied. Overall, these results show that the key mechanism of acute silver toxicity in marine invertebrates is not associated with an osmotic or ionoregulatory impairment at the hemolymph level, as observed in freshwater fish and crustaceans and in seawater fish. However, they indicate that acute waterborne silver induces significant changes in Na+ ,K(+)-ATPase activity and probably affects other mechanisms involved in water and ion transport at the cell membrane level, inducing impairments in water and ion regulation at the cellular level in different tissues of marine invertebrates. These results indicate the need to consider other "toxic sites" than gills in any future extension of the biotic ligand model (BLM) for seawater.
منابع مشابه
Comparison of acute toxicity (LC50) of chemical and biosynthetic by Sargasum angustifolium nanosilvers in Asian sea bass (Lates calcarifer)
This study was aimed to biosynthesis of silver nanoparticles using the seaweeds, Sargassum angustifolium and Comparison of acute toxicity (LC50) of commercial silver nanoparticles and biosynthetic nanoparticles performed by seaweed Sargasum angustifolium in Asian sea bass (Lates calcarifer) in 1397 in Ahvaz.After preparing extracts from Sargassum and biosynthesize the silver nanoparticles by ad...
متن کاملToxicity Effect of Colloidal Silver Nanoparticles to Marine Microalgae, Nannochloropsis oculata
To assess the acute toxicity of colloidal silver nanoparticles (AgNPs) in Nannochloropsis oculata, microalgal cells were exposed to different concentrations of AgNPs for 72 hours and according to OECD 201. Algal cell count was done every 24 hours and average specific growth rate, as well as percent inhibition of the average specific growth rate, were calculated for each concentration. Also, the...
متن کاملAcute toxicity test of detergent powder in silver carp (Hypophthalmicthys molitrix), common carp (Cyprinus carpio), goldfish (Carassius auratus) and roach (Rutilus rutilus caspicus)
Different pollutants have undesirable effects on aquatic ecosystems, detergent powder is one of the elements in the sewages so study on the effects of this factor on aquatic animals is crucial. The aim of the present study was to investigate acute effects of detergents as potentially dangerous additive to assess mortality effects of this product on some cultured fish. Silver Carp (Hypopht...
متن کاملEvaluation of silver nanoparticles toxicity in Daphnia magna: Comparison of chemical and green biosynthetic productions
Recently nanoparticles, particularly silver nanoparticles, are broadly used in industry, hence the contamination of the environment with AgNPs has caused considerable concern. In this study, the toxicity of biosynthetic nanosilver produced by two macroalgae: Sargassum boveanum and Ulva flexuosa extracts were compared with chemical nanosilver in Daphnia magna. Size and quality of nanoparticles e...
متن کاملChronic Effects of Coated Silver Nanoparticles on Marine Invertebrate Larvae: A Proof of Concept Study
Silver nanoparticles (AgNPs), owing to their unique physical and chemical properties, have become increasingly popular in consumer products. However, data on their potential biological effects on marine organisms, especially invertebrates, remain very limited. This proof of principle study reports the chronic sub-lethal toxicity of two coated AgNPs (oleic acid coated AgNPs and polyvinylpyrrolid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Aquatic toxicology
دوره 72 1-2 شماره
صفحات -
تاریخ انتشار 2005